National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
The complexity of constrained graph drawing
Hora, Martin ; Jelínek, Vít (advisor) ; Fink, Jiří (referee)
A labeled embedding of a planar graph G is a pair (G, g) consisting of a planar drawing G of G and a function g assigning labels (colors) to the faces of G. We study the problem of Embedding Restriction Satisfiability (ERS) that investi- gates whether a given graph has a labeled embedding satisfying a provided set of conditions. ERS is a relatively new problem, so not much is known about it. Nevertheless, it has great potential. It generalizes several problems looking for a particular drawing of a planar graph, such as the problem of Partially Embedded Planarity. Therefore, ERS may become a focal point in the area of graph draw- ing. In this thesis, we examine the computational complexity of ERS. We show that ERS is NP-complete. After that, we look at the complexity of some specific classes of its instances. We try to locate the boundary between the NP-complete and the polynomial variants of the problem. 1
An algorithm for extending partial planar drawings
Hora, Martin ; Jelínek, Vít (advisor) ; Šámal, Robert (referee)
This thesis studies the problem of partially embedded planarity. The input of the problem is a graph G and a planar drawing of a subgraph of G. The goal is to decide whether the drawing of the subgraph can be extended to a planar drawing of the entire graph G. It has already been proved that the partially embedded planarity problem can be solved in linear time. However, all known linear algorithms are relatively complicated. This is probably the reason that no implementation has yet been published. We will introduce a new, simpler linear algorithm that solves the problem and we will prove its correctness. Next, we will enclose an implementation of this algorithm in the C++ programming language. 1

Interested in being notified about new results for this query?
Subscribe to the RSS feed.